4. Let Xโ‚, Xโ‚‚, ..., Xn denote a random sample from a geometric distribution with success probability p (0 < p < 1) and defined by: p(x\p) = {p (1 โˆ’ p)ยน-x Use the conjugate beta (a, B) prior for p to do the following a) Compute the joint likelihood: f(xโ‚,x2,..., xn, p) = L(xโ‚,x2,...,xn|p) ร— g (p). b) Compute the marginal mass function: x = 1,2,..., n otherwise 00 m(x1,x2,...,xn) = [ L(x1,x2,..., Xn\p) ร— g(p) dp. -00 c) Compute the posterior density: g* (p|xโ‚,xโ‚‚,...,xn) = L(xโ‚,x2,...,xn|p) x g(p) dp SL(xโ‚,xโ‚‚,...,xn|p) ร— g (p) dp

Respuesta :