Evaluate the following integral as a power series. ∫ln(1βˆ’x 3
)dx (A) βˆ‘ n=0
[infinity]
​
(n+1)(3n+4)
(βˆ’1) n
x 3n+4
​
(B) βˆ’βˆ‘ n=0
[infinity]
​
(3n+2)(3n)
x 3n+4
​
(C) βˆ‘ n=0
[infinity]
​
(n+1)(4n+2)
(βˆ’1) n
x 4n+2
​
(D) βˆ’βˆ‘ n=0
[infinity]
​
(n+1)(3n+3)
x 3n+3
​
(E) βˆ‘ n=0
[infinity]
​
(n+1)(3n+3)
(βˆ’1) n
x 3n+3
​
(F) βˆ‘ n=0
[infinity]
​
(4n+1)(4n)
x 4n+1
​
(G) βˆ’βˆ‘ n=0
[infinity]
​
(n+1)(3n+4)
x 3n+4
​
(H) βˆ’βˆ‘ n=0
[infinity]
​
(n+1)(4n+2)
x 4n+2
​