Let βˆ’βˆ’β†’ O A = β†’ a , βˆ’βˆ’β†’ O B = 12 β†’ a + 4 β†’ b O A β†’ = a β†’ , O B β†’ = 12 a β†’ + 4 b β†’ and βˆ’βˆ’β†’ O C = β†’ b O C β†’ = b β†’ , where O O is the origin. If S S is the parallelogram with adjacent sides O A O A and O C O C , then area of the quadrilateral O A B C area of S area of the quadrilateral O A B C area of S is equal to
(1) 6
(2) 10
(3) 7
(4) 8