Answer:
(x,y)=(0,-4)
Step-by-step explanation:
Given : [tex]\frac{x}{5}- \frac{y}{4} = 1\\\\\frac{x}{6}+ y = -4[/tex]
To Find : (x,y)
Solution :
Equation 1 ) [tex]\frac{x}{5}- \frac{y}{4} = 1[/tex]
[tex]\frac{4x-5y}{20}= 1[/tex]
[tex]4x-5y= 20[/tex] Â ---A
Equation 2) Â [tex]\frac{x}{6}+ y = -4[/tex]
[tex]\frac{x+6y}{6} = -4[/tex]
[tex]x+6y = -24[/tex] Â ---B
Solve A Â and B by substitution
Substitute the value of x from B in A
[tex]4(-24-6y)-5y= 20[/tex]
[tex]-96-24y-5y= 20[/tex]
[tex]-96-29y= 20[/tex]
[tex]-96-20= 29y[/tex]
[tex]-116= 29y[/tex]
[tex]\frac{-116}{29}= y[/tex]
[tex]-4= y[/tex]
Substitute the value of y in B to get value of x
[tex]x+6(-4) = -24[/tex] Â
[tex]x-24= -24[/tex] Â
[tex]x=0[/tex] Â
So,(x,y)=(0,-4)
Check graphically
Plot the lines A and B on graph
[tex]x+6y = -24[/tex] -- Black line
[tex]4x-5y= 20[/tex] -- Purple line
Intersection point gives the solution
So, by graph intersection point is (0,-4)
Hence verified
So, (x,y)=(0,-4)