Respuesta :

Answer:

The coordinates of endpoint V is (7,-27)

Solution:

Given that the midpoint of line segment UV is (5,-11) And U is (3,5).

To find the coordinates of V.

The formula for mid-point of a line segment is as follows,

Midpoint of UV is [tex]\frac{x_{1}+x_{2}}{2}[/tex], [tex]\frac{y_{1}+y_{2}}{2}[/tex]

As per the formula,  [tex]\frac{x_{1}+x_{2}}{2}[/tex]=5, [tex]\frac{y_{1}+y_{2}}{2}[/tex]=-11

Here [tex]x_{1}=3; y_{1}=5[/tex]

Substituting the value of [tex]x_{1}[/tex] we get,

[tex]\frac{3+x_{2}}{2}[/tex]=5

[tex]3+x_{2}=5\times2[/tex]

[tex]x_{2}=10-3[/tex]

[tex]x_{2}=7[/tex]

Substituting the value of [tex]x_{2}[/tex] we get,

[tex]\frac{5+y_{2}}{2}[/tex]=-11

[tex]5+y_{2}=-11\times2[/tex]

[tex]y_{2}=-22-5[/tex]

[tex]y_{2}=-27[/tex]

So, the coordinates of V is (7,-27)