Respuesta :
Answer:
 E = (h2 / 8mL2) (n1² /4 + n2² + n3²)   ground state (1 0 0)
Explanation:
The solution of the Schrödinger equation for a potential box with infinite walls is a relatively simple state described in one dimension by the equation
     E = (h² / 8mL²) n²
Where h is the Planck constant 6.63 10 -34 J s, m the mass of the particle, L the length of the box, n is an integer that in quantum mechanics is called quantum number
Let's apply this equation to our case
X axis
    E = (h² / 8mLₓ²) n1²
    Lx = 2L
    E1 = (h² / 8m (2L)²)  n1² Â
    E1 = (h² / 8mL²)  ¼  n1²
Y Axis Â
    E2 = (h² / 8m [tex]L_{y}[/tex]²) n2²
    Ly = L
    E2 = (h2 / 8mL²) n2²
Z axis
    E3 = (h2 / 8m[tex]L_{z}[/tex]²) n3²
    Lz = L
    E3 = (h² / 8mL²) n3²
As energy is a scalar and is additive
    E = E1 + E2 + E3
    E = (h² / 8mL²)) ¼ n1² + (h² / 8mL²) n2² +  (h² / 8mL²)) n3²
Let's simplify
    E = (h2 / 8mL2) (n1² /4 + n2² + n3²)
Let's call   Eo = (h² / 8mL²)  to simplify the equation a bit
Â
    E = Eo (1/4 n1²+ n2² + n3²)
The base state is the lowest energy state
If we inspect the equation above the state of lowest energy acure for
    n1 = 1    n2 = 0    n3 = 0
    E = (h² / 8mL²) (¼ + 0 +0)
    E = ¼ Eo
The first excited states are
n1 Â Â n2 Â Â n3 Â Â E
0 Â Â Â Â 0 Â Â Â 1 Â Â Â Eo
0 Â Â Â Â 1 Â Â Â 0 Â Â Eo
1     0    1    E0 (1+ ¼) = 5/4 Eo
1 Â Â Â Â 1 Â Â Â 0 Â Â 5/4 Eo
1     1    1    Eo (¼ + 1 + 1) = 9/4 Eo