Answer:
a) Vaw = 2.19 mi / h  θ = 346.8º b) Vmgx = 0.866 mi / h  Vawy = -0.5 mi / h
Explanation:
We using the sum of vectors, we use the indexes ‘a’ for the plane, ‘g’ for the land ‘w’ for the wind,
     [tex]v_{ag}[/tex] = [tex]v_{aw}[/tex] + [tex]v_{wg}[/tex] Â
     [tex]v_{aw}[/tex] = [tex]v_{ag}[/tex] + [tex]v_{wg}[/tex]
To facilitate the calculation we decompose with respect to xy coordinate system
     [tex]v_{wgx}[/tex] =  [tex]v_{wg}[/tex] cos 30
     [tex]v_{wgy}[/tex]=  [tex]v_{wg}[/tex] sin30
   Â
     Vwgx = Vwd cos 30 Â
     Vwgx = Vwd sin30 Â
     Vmgx = 1.00 cos 30 Â
     Vmgx = 0.866 mi / h Â
     Vmgy = 1.00 sin30 Â
     Vwgy = 0.5 mi / h Â
Let's find the resulting components Â
     Vawx = 3.00 -0.866 Â
     Vawx = 2,134 mi / h Â
     Vawy = 0 - 0.5 Â
     Vawy = -0.5 mi / h
Let's use Pythagoras' theorem Â
    Vaw2 = Vawx2 + Vawy2 Â
    Vaw = Ra Vawx2 + Vawy2 Â
    Vaw = ra 2,134 2 + 0.52 Â
    Vaw = 2.19 mi / h Â