Answer:
 l  = 4  in  d  =  6 in    Note : l represent  the width  and  d represent the height
Step-by-step explanation:
Lets asume the dimensions of a rectangular page is l * d  where l is the wide and d is top-bottom leght
So total area of the page is  A  = l*d    ⇒  d = A/l   ⇒  d = 8/l
Then the print area of the page will be
l = x + 2    (wide)         d  = y + 4   (vertical lenght)
So area of the page is
A(x) = (x + 2 ) * ( y + 4 )    but  y = 8/l   and  l= x +2   ⇒  y = 8 ÷ ( x + 2 )
A (x) = ( x + 2) * ( 8 / x  + 4 )  ⇒ A(x) = 8 + 4x +16/x + 8  ⇒A(x) = 4x + 16 /x
Taken derivative we have:
A´(x)  = 4 + (-1 *(16)/x²  ⇒ A´(x) = 4 - 16/x²
A ´(x) =  0    means    4 - 16 /x² = 0    ⇒ 4 x²  - 16  = 0  x² = 4  x = 2
Therefore  y = 8 ÷ ( x +2)  and y = 2
And the dimensions of the page is
l  = 4  in  d  =  6 in