Explanation:
Formula for entropy balance for the given situation is as follows.
  [tex]\frac{Q}{T} + m_{A}S_{A} + m_{B}S_{B} - m_{AB}S_{AB} + S_{gen}[/tex] = 0
As the given system is adiabatic, hence Q = 0.
So, Â Â [tex]S_{gen} = m_{AB}S_{AB} - (m_{A}S_{A} + m_{B}S_{B})[/tex]
As the given data is as follows.
     [tex]m_{A}[/tex] = 10 kg/s,   [tex]S_{A}[/tex] = 5 kJ/kg K
     [tex]m_{B}[/tex] = 5 kg/sec,   [tex]S_{B}[/tex] = 10 kJ/kg K
    [tex]S_{AB}[/tex] = 7 kJ/kg K,  Â
       [tex]m_{AB} = m_{A} + m_{B}[/tex]
             = 10 + 5
             = 15 kg/sec
 [tex]S_{gen} = 15 \times 7 - (10 \times 5 + 5 \times 10)[/tex]
        = 5 kW/K
Thus, we can conclude that the rate of entropy generation in the device is 5 kW/K.