Let ????C be the positively oriented circle x2+y2=1x2+y2=1. Use Green's Theorem to evaluate the line integral ∫????7y????x+6x????y∫C7ydx+6xdy. equation editorEquation Editor

Respuesta :

By Green's theorem,

[tex]\displaystyle\int_C7y\,\mathrm dx+6x\,\mathrm dy[/tex]

[tex]=\displaystyle\iint_{x^2+y^2\le1}\frac{\partial(6x)}{\partial x}-\frac{\partial(7y)}{\partial y}\,\mathrm dx\,\mathrm dy[/tex]

[tex]=-\displaystyle\iint_{x^2+y^2\le1}\mathrm dx\,\mathrm dy[/tex]

which is -1 times the area of the disk [tex]x^2+y^2\le1[/tex]. Recall the area of a circle with radius [tex]r[/tex] is [tex]\pi r^2[/tex], so the integral has a value of [tex]\boxed{-\pi}[/tex].