Answer:
a) Â y = 162.6 m , b) R = 928.64 m
Explanation:
We will solve this exercise using projectile launch kinematics, as the initial velocities and angle are equal on the planet and the Earth, let's look for the gravedd coinage of the planet
Earth
     R = v₀² sin 2θ / g
     R g = v₀² sin 2θ Â
In the planet
     4.8 R = v₀² sin 2θ  / [tex]g_{p}[/tex]
     4.8 R [tex]g_{p}[/tex] = v₀² sin 2θ
     4.8 R [tex]g_{p}[/tex] = R g
     [tex]g_{p}[/tex] = g / 4.8
    [tex]g_{p}[/tex] = 9.8 / 4.8
     [tex]g_{p}[/tex] = 2.04 m / s²
Now we can answer the questions
a) The maximum height
     Vy² = [tex]v_{oy}[/tex]² - 2 g y
For ymax the vertical speed is zero ( [tex]v_{y}[/tex] = 0)
     sin θ  =  [tex]v_{oy}[/tex]/ [tex]v_{o}[/tex]
     [tex]v_{oy}[/tex] =  [tex]v_{o}[/tex] sinθ
      [tex]v_{oy}[/tex] = 44.9 sin 35
     [tex]v_{oy}[/tex] =  25.75 m/s
     y =  [tex]v_{oy}[/tex] ²/2 [tex]g_{p}[/tex]
     y = 25.75² / (2 2.04)
     y = 162.6 m
b) the scope
     R = v₀² sin 2θ  /[tex]g_{p}[/tex]
     R = 44.9² sin 2 35 / 2.04
     R = 928.64 m