Respuesta :

Answer:

option 3 ⇒ f⁻¹(x) =  [tex]\frac{x^{2} -2 }{3} [/tex]

Step-by-step explanation:

Given F(x) = [tex]\sqrt{3x+2}[/tex]

let y = f(x)

y = [tex]\sqrt{3x+2}[/tex]   ⇒ squaring the both sides

y² = 3x + 2  ⇒ subtract 2 from both sides

y² - 2 = 3x ⇒ divide both sides by 3

[tex]\frac{y^{2} -2 }{3} = x[/tex]

replace the location of x and y

∴ y = [tex]\frac{x^{2} -2 }{3} [/tex]

So, y will be f⁻¹(x)

∴ f⁻¹(x) =  [tex]\frac{x^{2} -2 }{3} [/tex]