Answer:
 H / R = 2/3
Explanation:
Let's work this problem with the concepts of energy conservation. Let's start with point P, which we work as a particle.
Initial. Lowest point
     Em₀ = K = 1/2 m v²
Final. In the sought height
     [tex]Em_{f}[/tex] = U = mg h
Energy is conserved
    Em₀ =  [tex]Em_{f}[/tex]
    ½ m v² = m g h
    v² = 2 gh
Now let's work with the tire that is a cylinder with the axis of rotation in its center of mass
Initial. Lower
    Em₀ = K = ½ I w²
Final. Heights sought
    Emf = U = m g R
    Em₀ =  [tex]Em_{f}[/tex]
    ½ I w² = m g R
The moment of inertial of a cylinder is
    I = [tex]I_{cm}[/tex] + ½ m R²
   I= ½ [tex]I_{cm}[/tex]  + ½ m R²
Linear and rotational speed are related
    v = w / R
    w = v / R
We replace
   ½ [tex]I_{cm}[/tex]  w² + ½ m R² w²  = m g R
moment of inertia of the center of mass   Â
   [tex]I_{cm}[/tex]  = ½ m R²
   ½ ½ m R² (v²/R²) + ½ m v² = m gR
  m v² ( ¼ + ½ ) = m g R
 Â
    v² = 4/3 g R
As they indicate that the linear velocity of the two points is equal, we equate the two equations
    2 g H = 4/3 g R
     H / R = 2/3