Respuesta :

Answer:

Part 1) [tex]z=121^o[/tex]

Part 2) [tex]x=59^o[/tex]

Part 3) [tex]y=49^o[/tex]

Part 4) [tex]w=72^o[/tex]

Step-by-step explanation:

step 1

Find the measure of angle z

we know that

The sum of exterior angles in a polygon is always equal to 360 degrees

so

[tex]z^o+(z+10)^o+(z-13)^o=360^o[/tex]

solve for z

[tex](3z-3)^o=360^o[/tex]

[tex]3z=363\\z=121^o[/tex]

step 2

Find the measure of angle x

we know that

[tex]z^o+x^o=180^o[/tex] ---> by supplementary angles (form a linear pair)

we have

[tex]z=121^o[/tex]

substitute

[tex]121^o+x^o=180^o[/tex]

[tex]x=180^o-121^o=59^o[/tex]

step 3

Find the measure of angle y

we know that

[tex]y^o+(z+10)^o=180^o[/tex] ---> by supplementary angles (form a linear pair)

we have

[tex]z=121^o[/tex]

substitute

[tex]y^o+(121+10)^o=180^o[/tex]

[tex]y=180^o-131^o=49^o[/tex]

step 4

Find the measure of angle w

we know that

[tex]w^o+(z-13)^o=180^o[/tex] ---> by supplementary angles (form a linear pair)

we have

[tex]z=121^o[/tex]

substitute

[tex]w^o+(121-13)^o=180^o[/tex]

[tex]w=180^o-108^o=72^o[/tex]