Answer:
4.31 × 10²
Explanation:
Equation of the reaction;
[tex]H_{2(g)} + I_{2(g)}[/tex]   ⇌   [tex]2HI_{(g)[/tex]
The ICE Table is shown as follows:
              [tex]H_{2(g)}[/tex]     [tex]+[/tex]     [tex]I_{2(g)}[/tex]     ⇌   [tex]2HI_{(g)[/tex]
Initial           3.10           2.50          0   Â
Change         - x            -x           + 2x   Â
Equilibrium     (3.10 - x)         0.0800        2x
From [tex]I_{2(g)}[/tex] Â ;
We can see that 2.50 - x = 0.0800
So; we can solve for x;
x = 2.50 - 0.0800
x = 2.42
[tex]H_{2(g)}[/tex] Â which = (3.10 -x) will be :
= 3.10 - 2.42
= 0.68
[tex]2HI_{(g)[/tex] = 2x
= 2 (2.42)
= 4.84
[tex]K_c = \frac{[HI]^2}{[H_2][I_2]}[/tex]
[tex]K_c = \frac{(4.84)^2}{(0.68)(0.0800)}[/tex]
[tex]K_c =\frac{23.4256}{0.0544}[/tex]
[tex]K_c =[/tex] 430.62
[tex]K_c[/tex] ≅ 431
[tex]K_c[/tex] = 4.31 × 10²