Given an IVP
an(x)dnydxn+anâ1(x)dnâ1ydxnâ1+âŚ+a1(x)dydx+a0(x)y=g(x)
y(x0)=y0, yâ˛(x0)=y1, âŻ, y(nâ1)(x0)=ynâ1 If the coefficients an(x),âŚ,a0(x) and the right hand side of the equation g(x) are continuous on an interval I and if an(x)â 0 on I then the IVP has a unique solution for the point x0âI that exists on the whole interval I. Consider the IVP on the whole real line
sin(x)d2ydx2+cos(x)dydx+sin(x)y=tan(x)
y(0.5)=20, yâ˛(0.5)=3, The Fundamental Existence Theorem for Linear Differential Equations guarantees the existence of a unique solution on the interval