the weekly mean income of a group of executives is $1,000 and the standard deviation of this group is $100. the distribution is normal. what percent of the executives have an income of $925 or less? group of answer choices

Respuesta :

Answer:

Approximately 23[tex]\%[/tex] percent of the executives have an income of $925 or less

Step-by-step explanation:

Given -

Mean income [tex]\boldsymbol{(\nu)}[/tex]  =  $1,000

Standard deviation [tex]\boldsymbol{(\sigma )}[/tex] = $100

Let X be the income of group of executives

what percent of the executives have an income of $925 or less =

[tex]P(X\leq 925 )[/tex] = [tex]P(\frac{X - \nu }{\sigma}\leq \frac{925 - 1000)}{100}[/tex])

                   =  [tex]P(Z\leq \frac{-75}{100} )[/tex]      Put [  [tex]\boldsymbol{Z = \frac{X - \nu }{\sigma}}[/tex] ]

                     =  [tex]P(Z\leq -0.75)[/tex]   Using Z table      

                    =  .2266

                     = [tex]22.66\%[/tex]

                     =  [tex]23%[/tex][tex]\%[/tex] (Approximately)