air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occurs at an average outer surface temperature of 315 K at the rate of 30 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. For air as an ideal gas with Cp = 1.1 Kj/kg * K, determine

(a) the rate power is developed, in kJ per kg of air flowing, and
(b) the rate of entropy production within the turbine, in kJ/kg per kg of air flowing.

Respuesta :

Answer:

a

The rate of work developed is [tex]\frac{\r W}{\r m}= 300kJ/kg[/tex]

b

The rate of entropy produced within the turbine is   [tex]\frac{\sigma}{\r m}= 0.0861kJ/kg \cdot K[/tex]

Explanation:

     From  the question we are told

          The rate at which heat is transferred is [tex]\frac{\r Q}{\r m } = - 30KJ/kg[/tex]

the negative sign because the heat is transferred from the turbine

          The specific heat capacity of air is [tex]c_p = 1.1KJ/kg \cdot K[/tex]

          The inlet temperature is  [tex]T_1 = 970K[/tex]

          The outlet temperature is [tex]T_2 = 670K[/tex]

           The pressure at the inlet of the turbine is [tex]p_1 = 400 kPa[/tex]

          The pressure at the exist of the turbine is [tex]p_2 = 100kPa[/tex]

           The temperature at outer surface is [tex]T_s = 315K[/tex]

         The individual gas constant of air  R with a constant value [tex]R = 0.287kJ/kg \cdot K[/tex]

The general equation for the turbine operating at steady state is \

               [tex]\r Q - \r W + \r m (h_1 - h_2) = 0[/tex]

h is the enthalpy of the turbine and it is mathematically represented as          

        [tex]h = c_p T[/tex]

The above equation becomes

             [tex]\r Q - \r W + \r m c_p(T_1 - T_2) = 0[/tex]

              [tex]\frac{\r W}{\r m} = \frac{\r Q}{\r m} + c_p (T_1 -T_2)[/tex]

Where [tex]\r Q[/tex] is the heat transfer from the turbine

           [tex]\r W[/tex] is the work output from the turbine

            [tex]\r m[/tex] is the mass flow rate of air

             [tex]\frac{\r W}{\r m}[/tex] is the rate of work developed

Substituting values

              [tex]\frac{\r W}{\r m} = (-30)+1.1(970-670)[/tex]

                   [tex]\frac{\r W}{\r m}= 300kJ/kg[/tex]

The general balance  equation for an entropy rate is represented mathematically as

                       [tex]\frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma = 0[/tex]

          =>          [tex]\frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)[/tex]

    generally [tex](s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ][/tex]

substituting for [tex](s_1 -s_2)[/tex]

                      [tex]\frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} + c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ][/tex]

                      Where [tex]\frac{\sigma}{\r m}[/tex] is the rate of entropy produced within the turbine

 substituting values

                [tex]\frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ][/tex]

                    [tex]\frac{\sigma}{\r m}= 0.0861kJ/kg \cdot K[/tex]