Answer:
dV/dt  = 0,474552 in³/units of time
dV/dt  = 0,47  in³/units of time
Step-by-step explanation:
Volume for the right circular cone:
V(c)  =  (1/3)*π*x²*h
Where  x is radius of the circular base, and h the heigt
Differentiating on both sides of the equation, keeping in mind that  h is constant, we get:
dV/dt  = (1/3)*3,6*2*x*dx/dt   (1)
Now when radius changes from 1,3 to  1,27 inches  or 0,03 in  in/units of time
dV/dt  =  (1/3)*3,6* 2*(1,3)²*dx/dt  Â
units  h  in   inches
 radius  in   inches
 dx/dt  in inches/units of time
Then
dV/dt  = 0,474552 in³/units of time
dV/dt  = 0,47  in³/units of time