The reaction is proceeding at a rate of 0.0080 Ms-1 in 50.0 mL of solution in a system with unknown concentrations of A and B. What is the rate immediately after the concentrations of all reactants are instantaneously lowered to 50% of their current value by adding an additional 50.0 mL of solvent?

Respuesta :

znk

Answer:

0.0010 mol·L⁻¹s⁻¹  

Explanation:

Assume the rate law is  

rate = k[A][B]²

If you are comparing two rates,

[tex]\dfrac{\text{rate}_{2}}{\text{rate}_{1}} = \dfrac{k_{2}\text{[A]}_2[\text{B]}_{2}^{2}}{k_{1}\text{[A]}_1[\text{B]}_{1}^{2}}= \left (\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}}\right ) \left (\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}\right )^{2}[/tex]

You are cutting each concentration in half, so

[tex]\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}} = \dfrac{1}{2}\text{ and }\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}= \dfrac{1}{2}[/tex]

Then,

[tex]\dfrac{\text{rate}_{2}}{\text{rate}_{1}} = \left (\dfrac{1}{2}\right ) \left (\dfrac{1}{2}\right )^{2} = \dfrac{1}{2}\times\dfrac{1}{4} = \dfrac{1}{8}\\\\\text{rate}_{2} = \dfrac{1}{8}\times \text{rate}_{1}= \dfrac{1}{8}\times \text{0.0080 mol$\cdot$L$^{-1}$s$^{-1}$} = \textbf{0.0010 mol$\cdot$L$^{-1}$s$^{-1}$}\\\\\text{The new rate is $\large \boxed{\textbf{0.0010 mol$\cdot$L$^\mathbf{{-1}}$s$^{\mathbf{-1}}$}}$}[/tex]