Answer:
0.0010 mol·L⁻¹s⁻¹
Explanation:
Assume the rate law is
rate = k[A][B]²
If you are comparing two rates,
[tex]\dfrac{\text{rate}_{2}}{\text{rate}_{1}} = \dfrac{k_{2}\text{[A]}_2[\text{B]}_{2}^{2}}{k_{1}\text{[A]}_1[\text{B]}_{1}^{2}}= \left (\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}}\right ) \left (\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}\right )^{2}[/tex]
You are cutting each concentration in half, so
[tex]\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}} = \dfrac{1}{2}\text{ and }\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}= \dfrac{1}{2}[/tex]
Then,
[tex]\dfrac{\text{rate}_{2}}{\text{rate}_{1}} = \left (\dfrac{1}{2}\right ) \left (\dfrac{1}{2}\right )^{2} = \dfrac{1}{2}\times\dfrac{1}{4} = \dfrac{1}{8}\\\\\text{rate}_{2} = \dfrac{1}{8}\times \text{rate}_{1}= \dfrac{1}{8}\times \text{0.0080 mol$\cdot$L$^{-1}$s$^{-1}$} = \textbf{0.0010 mol$\cdot$L$^{-1}$s$^{-1}$}\\\\\text{The new rate is $\large \boxed{\textbf{0.0010 mol$\cdot$L$^\mathbf{{-1}}$s$^{\mathbf{-1}}$}}$}[/tex]