The combustion of titanium with oxygen produces titanium dioxide: Ti(s) + O 2(g) → TiO 2(s) When 2.060 g of titanium is combusted in a bomb calorimeter, the temperature of the calorimeter increases from 25.00°C to 91.60°C. In a separate experiment, the heat capacity of the calorimeter is measured to be 9.84 kJ/K. The heat of reaction for the combustion of a mole of Ti in this calorimeter is ________ kJ/mol.

Respuesta :

Answer: The heat of reaction for the combustion of titanium is 15240 kJ/mol

Explanation:

The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

[tex]Q=C\times \Delta T[/tex]

Q = Heat absorbed by calorimeter =?

C = heat capacity of calorimeter = 9.84 kJ/K

Initial temperature of the calorimeter  = [tex]T_i[/tex] = [tex]25.00^0C=(25.00+273)=298.00K[/tex]

Final temperature of the calorimeter  = [tex]T_f[/tex]  = [tex]91.60^0C=(91.60+273)K=364.6K[/tex]

Change in temperature ,[tex]\Delta T=T_f-T_i=(364.6-298.0)K=66.60K[/tex]

Putting in the values, we get:

[tex]Q=9.84kJ/K\times 66.60K=655.3kJ[/tex]

As heat absorbed by calorimeter is equal to heat released by combustion of titanium

[tex]Q=q[/tex]

[tex]\text{Moles of titanium}=\frac{\text{given mass}}{\text{Molar Mass}}=\frac{2.060g}{47.8g/mol}=0.0430mol[/tex]  

Heat released by 0.0430 moles of titanium = 655.3 kJ

Heat released by 1 mole of titanium = [tex]\frac{655.3}{0.0430}\times 1=15240kJ[/tex]

The heat of reaction for the combustion of titanium is 15240 kJ/mol