Respuesta :
Complete Question
The complete question is shown on the first and second uploaded image
Answer:
The minimum mass of [tex]M_1 = 90\ kg[/tex] correct option is E
Explanation:
Free body diagram of the set up in the question is shown on the third uploaded image
The mass of board is [tex]M = 60kg[/tex]
The length of the board is [tex]L = 6 \ m[/tex]
The length extending over the edge is [tex]L_e = 4 \ m[/tex]
The second mass is [tex]M_2 = 30kg[/tex]
Now to obtain [tex]M_1[/tex] we take moment about the edge of the platform
[tex]M_1 g L_1 = Mg \frac{L}{2} + M_2 g L_2[/tex]
[tex]M_1 L_1 = M \frac{L}{2} + M_2 L_2[/tex]
Substituting value
[tex]M_1 (2) = (60)(1) + (30)(4)[/tex]
[tex]M_1 = 90 \ kg[/tex]



The minimum value of M1 needed to keep the board from falling off the platform is 90 kg.
From the information given, we are to find:
- the mass (M1) of placed on the left side edge of the board
Given that:
- the mass of the board = 60 kg
- the length of the board = 6 m
- If the mass on the right side = 30 kg, and the length of the board L1 = 2m
- Then, the length L2 which extend over the edge = 4m
Consider the center of gravity in the board that lies at the length of the board midpoint.
Then, the distance (D) of the gravity center from the platform end = 3 - 2
= 1 m
∴
Considering the moment about the platform end, the mass (M1) placed on the left side edge of the board can be computed as:
[tex]\mathbf{M_1gL_1 = MgD + M_2gL_2} \\ \\ \mathbf{M_1L_1 = MD + M_2gL_2} \\ \\ \mathbf{M_1(2) = 60 \ kg \times 1 + 30 \ kg \times (4)} \\ \\ \mathbf{ M_1 =\dfrac{60 \ kg + 120 kg }{2} } \\ \\ \mathbf{ M_1 =\dfrac{180 \ kg}{2} } \\ \\ \mathbf{ M_1 =90 \ kg }[/tex]
Therefore, we can conclude that the minimum value M1 needed to keep the board from falling off the platform is 90 kg.
Learn more about masses here:
https://brainly.com/question/19694949?referrer=searchResults