Respuesta :
Answer:
(a) the velocity of the first block block immediately after the collision is 2.5 m/s the same direction
(b) change in total kinetic energy of the system is - 0.875 J
(c) change in total kinetic energy of the system is 33.8 J
Explanation:
Given;
mass of first block, m₁ = 2.5 kg
initial speed of first block, u₁ = 3.9 m/s
mass of second block, m₂ = 5.0 kg
initial speed of the second block, u₂ = 2.6 m/s
final speed of the second block, v₂ = 3.3 m/s
Part (A) velocity of the first block block immediately after the collision:
Apply the principle of conservation of linear momentum;
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
where;
v₁ is the velocity of the first block block immediately after the collision
(2.5 x 3.9) + (5 x 2.6) = 2.5v₁ + (5 x 3.3)
22.75 = 2.5v₁ + 16.5
2.5v₁ = 22.75 - 16.5
2.5v₁ = 6.25
v₁ = 6.25 / 2.5
v₁ = 2.5 m/s the same direction
Part (B) change in total kinetic energy of the system:
change in kinetic energy = final kinetic energy - initial kinetic energy
ΔK = (¹/₂m₁v₁² + ¹/₂m₂v₂²) - (¹/₂m₁u₁² + ¹/₂m₂u₂²)
ΔK = ( ¹/₂ x 2.5 x 2.5² + ¹/₂ x 5 x 3.3²) - (¹/₂ x 2.5 x 3.9² + ¹/₂ x 5 x 2.6²)
ΔK = 35.0375 J - 35.9125 J
ΔK = - 0.875 J
Part (C) change in total kinetic energy of the system if second block ends up with a speed of 5.2 m/s
Apply the principle of conservation of linear momentum to determine the final speed of the first block;
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(2.5 x 3.9) + (5 x 2.6) = 2.5v₁ + (5 x 5.2)
22.75 = 2.5v₁ + 26
2.5v₁ = 22.75 - 26
2.5v₁ = - 3.25
v₁ = - 3.25 / 2.5
v₁ = -1.3 m/s
change in kinetic energy = final kinetic energy - initial kinetic energy
ΔK = (¹/₂m₁v₁² + ¹/₂m₂v₂²) - (¹/₂m₁u₁² + ¹/₂m₂u₂²)
ΔK = ( ¹/₂ x 2.5 x -1.3² + ¹/₂ x 5 x 5.2²) - (¹/₂ x 2.5 x 3.9² + ¹/₂ x 5 x 2.6²)
ΔK = 69.7125 J - 35.9125 J
ΔK = 33.8 J
Answer:
A = 2.5m/s
B = 0.875J
C = 6.57J
Explanation:
M1 = 2.2kg
U1 = 3.9m/s
M2 = 5.0kg
U2 = 2.6m/s
V1 = ?
V2 = 3.3m/s
A. After the collision, for conservation of linear momentum,
M1U1 + M2U2 = M1V1 + M2V2
Solve for V1
V1 = (M1U1 + M2U2 - M2V2) / M1
V1 = (2.5*3.9) + (5.0*2.6) - (5.0*3.3) / 2.5
V1 = (9.75 + 13 - 16.50) / 2.2
V2 = 6.25 / 2.5 = 2.5m/s
b. The change in total kinetic energy after the collision is the difference between the sum of the initial kinetic energy of the two blocks and final kinetic energy of the two blocks
∇K.E = [½(M1U1²) + ½(M2U2²)] - [½M1V1² + ½M2V2²]
∇K.E = [½(2.5 * 3.9²) + ½(5.0*2.6²)] - [½(2.5*2.5²) + ½(5*3.3²)]
∇K.E = (19.01 + 16.90) - (7.81 + 27.225)
∇K.E = 35.91 - 35.035
∇K.E = 0.875J
c.
From the previous equation where we defined V2,
V1 = [(M1U1 + M2U2) - M2V2] / M2
V1 = [(2.5*3.9) * (5.0*2.6) - (5.0*5.2)] / 2.5
V1 = [(9.75 + 13) - 26] / 2.5
V1 = -1.3m/s
∇K.E = ½(M1U1² + M2U2²) - ½(M1V1² + M2V2²
∇K.E = ½(2.5*3.9² + 5.0*2.6²) - ½(2.5* (-1.3)² + 5.0 * 3.3²)
∇K.E = 35.915 - 29.34
∇K.E = 6.57J