Answer:
Final temperature of the gas is 576 [tex]^{0}\textrm{C}[/tex].
Explanation:
As the amount of gas and pressure of the gas remains constant therefore in accordance with Charles's law:
[tex]\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}[/tex]
where [tex]V_{1}[/tex] and [tex]V_{2}[/tex] are volume of gas at [tex]T_{1}[/tex] and [tex]T_{2}[/tex] temperature (in kelvin scale) respectively.
Here [tex]V_{1}=158mL[/tex] , [tex]T_{1}=(273+25)K=298K[/tex] and [tex]V_{2}=450mL[/tex]
So [tex]T_{2}=\frac{V_{2}T_{1}}{V_{1}}=\frac{(450mL)\times (298K)}{(158mL)}=849K[/tex]
849 K = (849-273) [tex]^{0}\textrm{C}[/tex] = 576 [tex]^{0}\textrm{C}[/tex]
So final temperature of the gas is 576 [tex]^{0}\textrm{C}[/tex].