Respuesta :

Answer:

Convergent

cos 1 − 1

Step-by-step explanation:

∑ (cos 1/n² − cos 1/(n+1)²)

= lim(n→∞) [(cos 1 − cos 1/4) + (cos 1/4 − cos 1/9) + ... + (cos 1/n² − cos 1/(n+1)²)]

= lim(n→∞) [cos 1 − cos 1/(n+1)²]

= cos 1 − cos 0

= cos 1 − 1

The series converges to cos 1 − 1.