Answer:
The distance of  Musah's final point from the center in the west direction is  60.355 steps
The distance of  Musah's final point from the center in the north direction is  85.355 steps
Step-by-step explanation:
Given that :
Musah stands at the center of a rectangular field.
He takes 50 steps north, then 25 steps West and finally 50 on a bearing of 315°.
The sketch for Musah's movement is seen in the attached file below.
How far west is Musah's final point from the centre?
In order to determine how far west  is Musah's,
Let d be the distance of how far west;
Then d = BC + CD cos θ
In the North West direction,
cos θ = cos 45°
d = 25 + 50( cos 45°)
d = 25 + 50([tex]\dfrac{1}{\sqrt{2}}[/tex] Â )
d = 25 + 50( 0.7071)
d =25 + 35.355
d = 60.355 steps
How far north is Musah's final point from the center?
Let dâ be the distance of how far North;
Then dâ = AB + CD sin  θ
dâ = 50 + 50  sin  45°
dâ = 50 + 50([tex]\dfrac{1}{\sqrt{2}}[/tex] Â )
dâ = 50 + 50( 0.7071)
dâ = 50 + 35.355
dâ = 85.355 Â steps