Respuesta :

Answer:

therefore, [tex]\frac{(2n)!}{n!}=(n+1)\cdot (n+2)\dots (2n)[/tex]

Step-by-step explanation:

[tex]\frac{(2n)!}{n!}[/tex] is interesting

if we write it out for n=4

[tex]\frac{(2n)!}{n!}=\frac{(2(4))!}{4!}=\frac{8!}{4!}=\frac{1\cdot 2\cdot 3\cdot 4\cdot 5 \cdot 6\cdot 7\cdot 8}{1\cdot 2\cdot 3\cdot 4}=5\cdot 6\cdot 7\cdot 8[/tex]

try for n=3

[tex]\frac{(2n)!}{n!}=\frac{(2(3))!}{3!}=\frac{6!}{3!}=\frac{1\cdot 2\cdot 3\cdot 4\cdot 5 \cdot 6}{1\cdot 2\cdot 3}=4\cdot 5\cdot 6[/tex]

we notice that the first [tex]n[/tex] terms cancel out

therefore, [tex]\frac{(2n)!}{n!}=(n+1)\cdot (n+2)\dots (2n)[/tex]

there is no further information given