Given parameters:
Area of the rectangular garden  = 359ft²
Unknown:
length and width of the garden  = ?
To find the length and breadth of the garden, we need to define and know that the area of a rectangle is.
 Area of a rectangle  = Length x Breadth
From the problem statement;
 Let w = width of the rectangular garden
    L = length of the garden;
 Now,
     length of a rectangular garden is 5 feet less than 4 times its width
      L = 4w - 5
Now let us substitute this into the equation;
    Area  = L x w
  359 = (4w - 5)w
      4w² - 5w - 359
Using:
     w = -b ± √b² -  4ac  /  2a
 where b  = -5 , a  = 4  and c = -359
 w  =  -(-5)  ± √-5² - 4(4)(-359)  /  2(4)
 w = 5 ± √25 + 5744 / 8
 w =  5 ± 75.9 / 8
 w  = [tex]\frac{5 + 75.9}{8} or \frac{5 - 75.9}{8}[/tex]
 w  = 10.1ft
 The other solution is not possible it will be a negative value. Width value cannot be negative.
So L = 4w - 5 Â = 4(10.1) - 5 = 35.5ft
The length and breadth of the rectangular are 35.5ft and 10.1ft respectively.