Kim drove from Mathtown at (-2, 5) to Geometryville at (3, -1) to Algebra Springs at (-6, -5), and then back to Mathtown. Find the total distance Kim traveled to the nearest hundredth.

Answer:
Option (3)
Step-by-step explanation:
To solve this question we will use the formula,
Distance (d) between two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex],
d = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Distance between Mathtown (-2, 5) to Geometryville (3, -1)
[tex]d_1=\sqrt{(3+2)^2+(-1-5)^2}[/tex]
[tex]=\sqrt{25+36}[/tex]
[tex]=\sqrt{61}[/tex]
[tex]=7.81[/tex]
Distance between Geometryville (3, -1) and Algebra Springs (-6, -5)
[tex]d_2=\sqrt{(3+6)^2+(-1+5)^2}[/tex]
[tex]=\sqrt{81+16}[/tex]
[tex]=\sqrt{97}[/tex]
[tex]=9.85[/tex]
Distance between Algebra Springs (-6, -5) and Mathtown (-2, 5)
[tex]d_3=\sqrt{(6-2)^2+(5+5)^2}[/tex]
[tex]=\sqrt{16+100}[/tex]
[tex]=\sqrt{116}[/tex]
[tex]=10.77[/tex]
Now total distance traveled by Kim = [tex]d_1+d_2+d_3[/tex]
= 7.81 + 9.85 + 10.77
= 28.43
Therefore, Option (3) will be the answer.