Answer:
The margin of error is  [tex]E = 6.9 [/tex]
The 95% confidence interval is  [tex] 26.5  <  \mu < 40.3 [/tex] Â
Step-by-step explanation:
From the question we are told that
  The sample size is  n  =  31
   The mean is  [tex]\mu = 33.4 \ ng/ml[/tex]
   The standard deviation is  [tex]\sigma = 19.6 \ ng/ml[/tex]
From the question we are told the confidence level is  95% , hence the level of significance is  Â
   [tex]\alpha = (100 - 95 ) \%[/tex]
=> Â [tex]\alpha = 0.05[/tex]
Generally from the normal distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] is Â
  [tex]Z_{\frac{\alpha }{2} } =  1.96[/tex]
Generally the margin of error is mathematically represented as Â
   [tex]E = Z_{\frac{\alpha }{2} } *  \frac{\sigma }{\sqrt{n} }[/tex]
=> Â [tex]E = 1.96 Â * Â \frac{19.6 Â }{\sqrt{31 } }[/tex]
=> Â [tex]E = 6.9 [/tex]
Generally 95% confidence interval is mathematically represented as Â
   [tex]\= x -E <  \mu <  \=x  +E[/tex]
=> [tex] 33.4 Â - 6.9 < Â \mu < 33.4 Â + Â 6.9 [/tex]
=> [tex] 26.5 Â < Â \mu < 40.3 [/tex] Â