gmedina5
contestada

Ryan is swinging a 0.2 kg ball tied to a string around his head in a flat, horizontal circle. The radius of the circle is 0.40 m, and linear speed is 1.3 m/s. Find the centripetal force acting on the ball to keep it in the circular path. O 1.72 N O 2.04 N 0 0.046 N 0 0.845 N​

Respuesta :

Hello!!

How you now, first we have to calculate centripetal aceleration, for that we know what:

[tex]\boxed{\alpha =\frac{v^{2} }{r} }[/tex]

[tex]\textbf{Being:}[/tex]

[tex]\sqrt{}[/tex] [tex]\alpha = Centripetal\ aceleration= \ ?[/tex]

[tex]\sqrt{}[/tex] [tex]r = Radius = 0,4\ m[/tex]

[tex]\sqrt{}[/tex] [tex]v = Linear \ speed = 1,3\ m/s[/tex]

[tex]\textbf{So let's replace and resolve it}[/tex]

[tex]\alpha = \dfrac{(1,3\ m/s)^{2}}{0,4\ m}[/tex]

[tex]\alpha = 4.225 \ m / s^{2}[/tex]

And, for calculate centripetal force, lets applicate the formula:

[tex]\boxed{ F = m * \alpha }[/tex]

[tex]\textbf{Being:}[/tex]

[tex]\sqrt{}[/tex] [tex]\alpha = Centripetal\ aceleration= \ 4,225\ m/ s^{2}[/tex]

[tex]\sqrt{}[/tex] [tex]F = Centripetal \ force = ?[/tex]

[tex]\sqrt{}[/tex] [tex]m = Mass = 0,2\ kg[/tex]

[tex]\textbf{So let's replace and resolve it}[/tex]

[tex]F = 0,2 \ kg * 4,225\ m /s^{2}[/tex]

[tex]F = 0.845\ N[/tex]

[tex]\text{The centripetal force is \textbf{0,845 N} }[/tex]

Good Luck!!