In ∆TMZ, the measure of angle M is 6° more than twice the measure of angle T, and the measure of angle Z is 50° less than five times the measure of angle T.

Respuesta :

Answer:

m<T = [tex]28^{o}[/tex], m<M = [tex]62^{o}[/tex] and m<Z = [tex]90^{o}[/tex]

Step-by-step explanation:

From the given ∆TMZ, let the measure angle T be represented by T.

So that,

m<M = 2T + 6°

m<Z = 5T - 50°

Sum of angles in a triangle = [tex]180^{o}[/tex]

T + (2T + 6°) + (5T - 50°) = [tex]180^{o}[/tex]

8T -[tex]44^{o}[/tex] = [tex]180^{o}[/tex]

8T = [tex]180^{o}[/tex] + [tex]44^{o}[/tex]

    = [tex]224^{o}[/tex]

T = [tex]\frac{224^{o} }{8}[/tex]

   = [tex]28^{o}[/tex]

Therefore,

i. m<T = [tex]28^{o}[/tex]

ii. m<M = 2T + 6°

        = 2 x [tex]28^{o}[/tex] + 6°

        = [tex]62^{o}[/tex]

m<M = [tex]62^{o}[/tex]

iii. m<Z = 5T - 50°

            = 5 x [tex]28^{o}[/tex] - 50°

            = [tex]140^{o}[/tex] - 50°

            = [tex]90^{o}[/tex]

m<Z = [tex]90^{o}[/tex]