Answer:
Max p = 28x + 41y
Subject to
59x + 58y ≤ 3660
21x + 34y ≤ 4020
x  ≥  0, y ≥ 0
Step-by-step explanation:
As given ,
                    Windbreakers      Rain breakers        Total
Finishing time             59 min           58 min          61 hr
Packaging time             21 min            34 min          68 hr
Profit                      28                 41
Let
The number of windbreaker jackets they should produce = x
The number of rain breaker jackets they should produce = y
As given,
The company wants to maximize profit.
⇒ Maximum Profit , p = 28x + 41 y
Now,
As 1 hour = 60 min
⇒61 hours = 61×60 = 3660 min
and 67 hours = 67×60 = 4020 min
∴ we get
The equations become
59x + 58y ≤ 3660
21x + 34y ≤ 4020
x  ≥  0, y ≥ 0
So, the Linear Programming Problem (LPP) for this problem is -
Max p = 28x + 41y
Subject to
59x + 58y ≤ 3660
21x + 34y ≤ 4020
x  ≥  0, y ≥ 0