Scores turned in by an amateur golfer at the Bonita Fairways Golf Course in Bonita Springs, Florida, during and are as follows: 2018 Season: 74 78 79 77 75 73 75 77 2019 Season: 71 70 75 77 85 80 71 79 a. Use the mean (to the nearest whole number) and standard deviation (to decimals) to evaluate the golfer's performance over the two-year period. Mean Standard deviation Mean Standard deviation b. What is the primary difference in performance between and

Respuesta :

Answer:

Step-by-step explanation:

The mean for 2018 scores is:

[tex]M ean ( \overline X) = \dfrac{\sum x_i}{n}[/tex]

[tex]M ean ( \overline X) = \dfrac{74 + 78+79+77+75+73+75+77}{8}[/tex]

[tex]M ean ( \overline X) = \dfrac{608} {8}[/tex]

[tex]\mathbf{M ean ( \overline X) = 76}[/tex]

The standard deviation for 2018 scores is:

[tex]s = \sqrt{\dfrac{\sum ( x_i - \bar x)^2}{n- 1} }[/tex]

[tex]s = \sqrt{\dfrac{ ( 74 -76)^2+( 78 -76)^2+( 79 -76)^2+...+( 73 -76)^2+( 75 -76)^2+( 77 -76)^2}{8- 1} }[/tex]

[tex]s = \sqrt{\dfrac{30}{7} }[/tex]

s = 2.07

The mean and standard deviation for the year 2018 scores is:

                                     2018

Mean                                 76

Standard deviation       2.07

The mean for 2019 scores is:

[tex]M ean ( \overline X) = \dfrac{\sum x_i}{n}[/tex]

[tex]M ean ( \overline X) = \dfrac{71 + 70+75+77+85+80+71+79}{8}[/tex]

[tex]M ean ( \overline X) = \dfrac{608} {8}[/tex]

[tex]\mathbf{M ean ( \overline X) = 76}[/tex]

The standard deviation for 2019 scores is:

[tex]s = \sqrt{\dfrac{\sum ( x_i - \bar x)^2}{n- 1} }[/tex]

[tex]s = \sqrt{\dfrac{ ( 71 -76)^2+( 70 -76)^2+( 75-76)^2+...+( 80 -76)^2+( 71 -76)^2+( 79 -76)^2}{8- 1} }[/tex]

[tex]s = \sqrt{\dfrac{194}{7} }[/tex]

s = 5.26

The mean and standard deviation for the year 2019 scores is:

                                     2019

Mean                                 76

Standard deviation       5.26

Difference: Both the two years have the same mean but the 2019 scores have higher variation as compared to 2018 scores.

Thus, the variation in scores was higher in 2019.

Otras preguntas