Answer:
[tex]\frac{dZ}{dt}[/tex]= [tex]\frac{40}{\sqrt{545} }[/tex] , so the model car is moving away from the fixed point at a rate of approximately 1.7 feet per second.
Step-by-step explanation:
The functions x and y satisfy (xβ20)^2+y^2=25 and differentiating gives 2(xβ20)dx/dt+2y dy/dt=0. Substituting the three known values and solving for dy/dt yields dy/dt=β32. Since Z=x^2+y^2βββββββ, dZ/dt=(2x ^ dx/dt+2y^dy/dt) / 2x2+y2β. Substituting Since Substituting for x, y,[tex]\frac{dx}{dt}[/tex] , and [tex]\frac{dy}{dt}[/tex] gives [tex]\frac{dZ}{dt}[/tex]= [tex]\frac{40}{\sqrt{545} }[/tex] ,