Solution :
a).
Given : Number of times, n = 25
      Sigma, σ = 0.200 kg
      Weight, μ = 13 kg
Therefore the hypothesis should be tested are :
[tex]$H_0 : \mu = 13 $[/tex]
[tex]$H_a : \mu \neq 13$[/tex]
b). When the value of [tex]$\overline x = 12.84$[/tex]
 Test statics :
  [tex]$Z=\frac{(\overline x - \mu)}{\frac{\sigma}{\sqrt n}} $[/tex]
 [tex]$Z=\frac{(14.82-13)}{\frac{0.2}{\sqrt {25}}} $[/tex]
     [tex]$=\frac{1.82}{0.04}$[/tex]
     = 45.5 Â
P-value = 2 x P(Z > 45.5)
      = 2 x 1 -P (Z < 45.5) = 0
Reject the null hypothesis if P value  < α = 0.01 level of significance.
So reject the null hypothesis.
Therefore, we conclude that the true mean measured weight differs from 13 kg.