Answer:
 [tex]\frac{T_x}{T_y} = 22.63[/tex]
Explanation:
Kepler's third law is an application of Newton's second law for circular motion
     T² = K a³
let's apply this expression for each satellite
satellite X
      Tₓ² = K aₓ³
satellite Y
      [tex]T_y^2 = K a_y^3[/tex]
 the relation of the periods is
     [tex]\frac{T_x}{T_y} = \sqrt{ (\frac{a_x}{a_y} )^3 }[/tex]
they indicate us
      aₓ = 8 a_y
substitutes
      [tex]\frac{T_x}{T_y} = 8^{3/2}[/tex]
      [tex]\frac{T_x}{T_y} = 22.63[/tex]