Respuesta :

[tex]\bf 3tan(2x)=-3\implies tan(2x)=\cfrac{-3}{3}\implies tan(2x)=-1 \\\\\\ tan^{-1}[tan(2x)]=tan^{-1}(-1)\implies 2x=tan^{-1}(-1) \\\\\\ 2x= \begin{cases} \frac{3\pi }{4}\\\\ \frac{7\pi }{4} \end{cases}\implies \begin{cases} 2x=\cfrac{3\pi }{4}\implies \measuredangle x=\cfrac{3\pi }{8}\\\\ 2x=\cfrac{7\pi }{4}\implies \measuredangle x=\cfrac{7\pi }{8} \end{cases}[/tex]