[tex]A = 4 \pi R x^{2} [/tex] The question does not give you the radius so we have to get it from circumference Circumference = [tex] \pi [/tex] (diameter) Divide each side by [tex] \pi [/tex] : Diameter = [tex] \frac{C}{ \pi } [/tex] Radius = 1/2 diameter : [tex]R = \frac{C}{2 \pi } [/tex] Area = [tex]4 \pi R^{2} [/tex] [tex]4 \pi ( \frac{C}{2 \pi })^{2} =
4 \pi \frac{(C) ^{2} }{4 \pi ^{2} } [/tex] Divide top & bottom by [tex]4 \pi [/tex] : A= [tex] \frac{(C) ^{2} }{ \pi } [/tex] Circumference = 37.68 units