There are two stages to the flight: acceleration stage and deceleration stage.
mā = 200 kg, mass of the rocket
mā = 100 kg, mass of fuel
aā = 30.0 m/s², upward acceleration when burning fuel
Ignore air resistance and assume g = 9.8 m/s².
Acceleration stage:
The rocket starts from rest, therefore the initial vertical velocity is zero.
The distance traveled is given by
sā = (1/2)*(30.0 m/s²)*(30.0 s)² = 13500 m
Deceleration stage (due to gravity):
The initial velocity is u = (30.0 m/s²)*(30 s) = 900 m/s
The initial height is 13500 m
At maximum height, the vertical velocity is zero.
Let sā =Ā the extra height traveled. Then
(900 m/s)² - 2*(9.8 m/s²)*(sā m) = 0
sā = 900²/19.6 = 41326.5 m
The maximum altitude isĀ
sā+sā = 54826.5 m
Answer: 54,826.5 m