The formula for the future value of an investment with regular contributions is
FV = M((1+r/n)^(nt)-1)(n/r)
  where
  FV = Future value
  M = Deposit per period
  r = Interest rate
  n = number of periods per year
  t = number of years
  So let's solve for M, then substitute the known values and calculate:
  FV = M((1+r/n)^(nt)-1)(n/r)
FV/(((1+r/n)^(nt)-1)(n/r)) = M
    250000/(((1+0.037/12)^(12 * 15)-1)(12/0.036)) = M
  250000/(((1+0.003083333)^(180)-1)(324.3243243)) = M
  250000/(((1.003083333)^(180)-1)(324.3243243)) = M
  250000/((1.740454228-1)(324.3243243)) = M
  250000/240.1473172 = M
  1041.027661 = M
    So the monthly deposit should be 1041.03 every month.
  Note: This calculation assumes that the 1st deposit will happen AFTER the 1st month.