Respuesta :
To solve this problem, you must follow the steps below:
 1. The formula for calculate the volume of a sphere, is:
 V=4/3(πr³)
 V is the volume of the sphere.
 r is the radius of the sphere.
 2. The initial volume of the spherical balloon with a radius of 5 inches, is:
 V1=4/3(π)(5 in)³
 V1=523.59 in³
 3. The final volume of the spherical balloon with a radius of 10 inches, is:
 V2=4/3(π)(10 in)³
 V2=4188.79 in³
 4. Then, you have:
 V2/V1=4188.79 in³/523.59 in³=8
 5. Therefore, the answer is:
 The volume of the spherical balloon with a radius of 10 inches is 8 times greater than the spherical balloon with radius of 5 inches.Â
Â
Â
Â
Â
Â
 1. The formula for calculate the volume of a sphere, is:
 V=4/3(πr³)
 V is the volume of the sphere.
 r is the radius of the sphere.
 2. The initial volume of the spherical balloon with a radius of 5 inches, is:
 V1=4/3(π)(5 in)³
 V1=523.59 in³
 3. The final volume of the spherical balloon with a radius of 10 inches, is:
 V2=4/3(π)(10 in)³
 V2=4188.79 in³
 4. Then, you have:
 V2/V1=4188.79 in³/523.59 in³=8
 5. Therefore, the answer is:
 The volume of the spherical balloon with a radius of 10 inches is 8 times greater than the spherical balloon with radius of 5 inches.Â
Â
Â
Â
Â
Â
This question asking the ratio of 10inch ballon volume compared to 5 inch ballon volume. Since the ballon is sphere, you will need to use sphere volume.
V10/V5=Â
4/3Â pi * 10^3Â Â /Â Â 4/3Â pi * 5^3Â Â Â Â ----> remove 4/3 pi
10^3Â Â Â Â Â Â Â Â / 5^3Â Â ---> split 10 into 2*5
2^3 * 5^3Â Â Â Â / 5^3Â Â --->remove 5^3
2^3 /1= 8 times
10-inch ballon volume is 8 times greater than the 5-inch ballon volume
V10/V5=Â
4/3Â pi * 10^3Â Â /Â Â 4/3Â pi * 5^3Â Â Â Â ----> remove 4/3 pi
10^3Â Â Â Â Â Â Â Â / 5^3Â Â ---> split 10 into 2*5
2^3 * 5^3Â Â Â Â / 5^3Â Â --->remove 5^3
2^3 /1= 8 times
10-inch ballon volume is 8 times greater than the 5-inch ballon volume